Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Haruo Sugi

Haruo Sugi

Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan

Title: Myosin head power stroke does not obey predictions based on the swinging lever arm mechanism of muscle contraction

Biography

Biography: Haruo Sugi

Abstract

Although more than 50 years have passed since the monumental discovery of sliding filament mechanism in muscle contraction, the molecular mechanism of myosin head movement, coupled with ATP hydrolysis, is still a matter for debate and speculation. A most straightforward way to study myosin head movement, producing myofilament sliding, may be to directly record ATP-induced myosin head movement in hydrated, living myosin filaments using the gas environmental chamber (EC) attached to an electron microscope . While the EC has long been used by materials scientists for the in situ observation of chemical reaction of inorganic compounds, we are the only group successfully using the EC to record myosin head movement in living myosin filaments. We position-mark individual myosin heads by attaching gold particles (diameter, 20nm) via three different monoclonal antibodies, attaching to (1) at the distal region of myosin head catalytic domain (CAD), (2) at the myosin head converter domain(COD), and (3) at the myosin head lever arm domain(LD). First, we recoded ATP-induced myosin head movement in the absence of actin filaments, and found that myosin heads moved away from, but not towards, the central bare region of myosin filaments. We also succeeded in recording ATP-induced myosin head power stroke in actin-myosin filament mixture. Since only a limited proportion of myosin heads can be activated by a limited amount of ATP applied, myosin heads only move by stretching adjacent sarcomere structures. As shown in Fig.1, myosin head CAD did not move parallel to the filament axis in the standard ionic strength (B), while it moved parallel to the filament axis (C). These results indicate that myosin head movement does not necessarily obey predictions of the swinging lever arm hypothesis appearing in every text books as an established fact.